Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 34, No. 7. pp. 1747-754, 1991

0017-9310/91 $3.00+0.00
Pergamon Press plc

Solutions of Luikov equations of heat and mass
transfer in capillary-porous bodies

JEN Y. LIU

U.S. Department of Agriculture, Forest Service, Forest Products Laboratory,
Madison, WI 53705-2398. U.S.A.

and

SHUN CHENG
Department of Engineering Mechanics, University of Wisconsin, Madison, W1 53706, U.S.A.

(Received 18 October 1989 and in final form 9 August 1990)

Abstract—This paper presents an analytical method to solve the Luikov system of linear partial differential
equations subject to specified initial and boundary conditions. Luikov equations are the governing equa-
tions in analyzing heat and mass diffusion problems for capillary-porous bodies. However, an analytical
method to obtain complete and satisfactory solutions of these equations is still lacking in the literature.
The method of solution presented in this paper is illustrated by considering the transient distributions of
temperature and moisture in a slab of wood during drying. Numerical results are obtained and compared
with published finite element solutions and experimental data for spruce specimens. The method should
have a general application to problems of heat and mass transfer in capillary-porous bodies.

INTRODUCTION

THis PAPER presents a method of solution for the
system of linear partial differential equations derived
by Luikov [1]. The Luikov system of equations is a
non-linear system because the transfer coefficients are
functions of either moisture content or temperature.
To make this system more mathematically tractable,
Luikov and Mikhailov [2] suggested that calculations
of time-dependent heat and mass transfer be made
assuming constant transfer coefficient zones (average
values can be taken for each zone). Therefore, an
efficient method of solution for the linear system with
constant transfer coeflicients is instrumental in solving
the non-linear system of equations. For the simple
cases of a slab, a cylinder, and a sphere, Luikov and
Mikhailov {2] used the Laplace transform technique
to obtain their solutions. These same problems were
also treated by Mikhailov and Ozisik [3] using the
finite integral transform technique. They obtained the
same solutions as those of Luikov and Mikhailov [2].
However, as Lobo er al. [4] recently indicated, these
solutions ignored the possible existence of complex
eigenvalues, and the solutions must therefore be re-
examined. If complex eigenvalues do exist, these solu-
tions can be grossly in error.

In our study, we developed an analytical approach
that yields complete and satisfactory solutions for
the Luikov equations subject to specified initial and
boundary conditions. The temperature and moisture
potential are expressed in terms of a potential function
reducing the two coupled Luikov equations to a single
fourth-order partial differential equation, with the
potential function as the dependent variable. The

solution of this equation leads to separate expressions
for the temperature and moisture potential, which
are coupled by the boundary conditions. From the
boundary conditions we obtain a transcendental
equation that can be satisfied by an infinite number
of real eigenvalues. Using the method of Miiller [5],
we found that the equation also has a pair of complex
roots. Thus, the temperature and moisture potential
are expressed in terms of the eigenvalues and an equal
number of unknown coefficients in the form of infinite
series. Making use of the initial conditions, the
unknown coefficients may be evaluated using a least-
squares technique [6, 7]. When the complex eigen-
values are not included in the infinite series, the solu-
tions cannot satisfy the initial conditions. We show
that both real and complex eigenvalues are needed to
yield results that can satisfy all the conditions of the
problem.

The significance of the present study is threefold:
(1) our method of solution should have a general
application to problems of heat and mass transfer in
capillary-porous bodies ; (2) our solutions provide an
approach to evaluate the relative importance of
the thermophysical properties of capillary-porous
materials in a heat and mass transfer analysis; and
(3) our solutions serve to gauge the accuracy of any
numerical approaches such as the finite element and
the finite difference techniques when applied to solve
this type of problem.

HEAT AND MASS TRANSFER EQUATIONS

For the one-dimensional case as shown in Fig. 1,
heat and moisture move along the x-axis only. Under
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NOMENCLATURE
A, B arbitrary constant coefficients Greck symbols
C moisture content 2, convective mass transfer coefficient
C, moisture capacity o, convective heat transfer coefficient
C, heat capacity o thermographic coefficient
1] BiA & ratio of vapor diffusion coefficient to
K. moisture conductivity coefficient coefficient of total moisture diffusion
K, thermal conductivity coefficient /. heat of phasc change
/ half thickness of specimen p dry body density
T, temperature of drying medium ¢ potential function.
T, initial temperature
! time Subscripts
v moisture potential a surrounding medium
U, moisture potential of drying m mass transfer
medium q heat transfer
v, initial moisture potential. 0 initial condition.

constant pressure condition, Luikov [1] equations can
be written as follows:

T or oo U
pC, P K, P +erpC, 2 (1)
and
U T oU
p(m AT Km() AA +Km A (2)
ct X7 [Ae

where T is the temperature. U the moisturc potential.
¢ the time, K, and K|, the thermal and moisture con-
ductivity coeflicients, respectively, C, and C,, the heat
and moisture capacities, respectively, p the dry body
density, & the ratio of the vapor diffusion coefficient
to the coefficient of total moisture diffusion, / the heat
of phase change. and 6 the thermogradient coefficient.
The moisture potential U is related to the moisture
content C by

C=C,U. (3)

At the surfaces of the specimen in Fig. 1. x = +/,

the boundary conditions of the third kind [1] apply.
They are

oT
K, o (T—T)+ (=)o (U=U) =0 (4)
Ox
and
ot T '
Km A -+ Kmo - +1m(br_ L'/;\) =0 (5)
dx éx

where «, and x,, are convective heat and mass transfer
coefficients, respectively, and 7, and U, the tem-
perature and moisture potential of the drying
medium.

Because of symmetry, at x = 0 we should have

and

1
|
I
1

F1G. 1. Schematic representation of wood specimen.
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E =0. @)

ox

(3}

The initial conditions are assumed to bc constant
and are represented by

T(x. 0) = T() (8)
and

U(x,0) = U,. 9

METHOD OF SOLUTION

Introducing two functions 7, and U, of x and ¢
such that

T(x,0) =T (x,)+T, (10)

(11)

and substituting 7 and U in all the preceding
equations, we obtain the following.

Ux.t) = U (x. 0+ U,

1. Basic equations

C T _ ?ZT C v, (12
P y (AT’ = By, C.\ ‘L/p m A’l‘ “)
c (“U _x 07 T'—{—K o*U, (13)
/) m ('\v m m a'\_}_ .
2. Boundary conditions
T, .
K, P +o, Ty +(1—-8)re, U, =0 (x=17) (14)
d U "T
K Y +Km() +1m[jl =0 (X—/) (15)
¢T,
Txco (x=0) (16)
Uiy (= 0) 17
o0 (x= a7
3. Initial conditions
T,(x,0)=T,-T, (18)
Ui(x,0) =U,—U,. (19)

Introducing a potential function ¢(x, ¢) such that

(“" )
T, = <1<m i3 ~pChn qt>¢ (20)
and
NGO
Up= —Knd 35 @

we find that equation (13) is automatically satisfied
and equation (12) becomes
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—— (CoK,+C,K
Kqu( + g rm

64
&

é? p'C,C, & ,
Eomze lo=0. (22
+t/"C Kmo)'\ ’(’;t+ KmKL, 0,_ ¢ ( )
Let
2C, =k K‘, (CuK,+C,K,+erCr K, 0)  (23)
and
= p/ZC C,. (24)
2 KmKl m g
Equation (22) can be written as
" e, C el =0
axt T T laxte *ot N
or
e G 0
((ax: - ‘\/(Cf—Ci)(j)
0
X(N C, 5 +V/(C| ></> 0 (25)

which can be broken into two equations as follows:

s DQ:’)T 26)

with
Di=C +/(Ci—-C)) (28)

and
D3 =C —J(Ci— (29)

Equations (26) and (27) are of the diffusion type. The
general solution of equation (25) is the sum of the
solutions of equations (26) and (27) and can therefore
be written as

O = (x,0)+d,(x, 1)
in which

G () =Ae S cos D éEx

$(x,1) = Be %" cos DsEx.
Hence

b =c 57 (A cos D, Ex+ B cos DyEx) (30)

where 4 and B are arbitrary constant coefficients.
(Sine functions do not appear because of the con-
ditions of symmetry represented by equations (16)
and (17).)

Substituting equation (30) into equations (20) and
(21) yields



T, =& ¢ ' [(—K, D +pC,)A cos D éx

+{—KnD3+pC)Bcos D,éx] (31)
U =K, 68 e " (Did cos D,Ex+ DB cos DyEx).
(32)

From these expressions and the boundary conditions
(14) and (15), we obtain

(a,&sin D El4a, cos D ENA

+(ai&sin D&+ agcos DLENB =0 (33)
(b, &sin D El+b, cos D ENA

+(b;&sin D&+ by cos D.ENB =0 (34)
where
K,D(K,Di—pCy,)
a»= K,D3[(1 —&)ia,,d—
u, = K‘,Dz(Kng —pCy)
a, = Ko, DI[(1 —¢)ia,,0 —a, ]+ 0,0Cr

@y =

%] +2,pCn

b, = —pC,D,
b, = a,D?
by = —pCnD,
by=w,Dj3.

For non-trivial solutions of equations (33) and (34)
to exist, the determinant of the coefficients of 4 and
B must vanish, giving the transcendental equation

(D¢ tan D\ &+ WD & tan D& +da) = ¢y (35)
in which
1«/KmD%—' (/PCm—(I—F)']vlm mODI
+2,K,Di( s KnD3/pC,)
V= KK, (D3=D3)
—,K,D}—a,pC— (1 —)/,, K, 0D
y +Oth D3(1-K.Di/pCy)
T - S A R L
. m(D’_D.)
S L

K.K

mry

From equation (34) we can also derive

B —pC,D &sin Dlg[+1,,,D COSD|g[

A" pCouD,Esin Dol —a, D3 cos DaEl

= g(%)

(36)

where the ratio B/A is set equal to g so that B can be
expressed in terms of 4 or A in terms of B.

In equation (35) the constant parameter ¢ can take
an infinite number of real values and can also take
some complex values. These values are called eigen-
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values of ¢. For each eigenvalue, corresponding values
for 4 and B should exist. Therefore, equations (31)
and (32) can be put in the following series form:

F

= Z C.Vl? ¢ ‘:'{’ Au[(_
n=1

xcos D&, x+(—

KmD % +f)CI“)

KoDi+pC)g(E,)

X o8 D:é‘ll'\.] (37)
and
I - Z K ()L_,,, kil AH[D% Ccos D|L::,,x
+D3g(&,)cos D>, x] (38)

where the function g(&,) from cquation (36) is used
to eliminate B,. Since &, can be either positive or
negative in the preceding equations without changing
the results, we need to take only positive real values
and complex values with positive real components in
the following calculations.

Now we must evaluate the coefficient A4, in equa-
tions (37) and (38). These coefficients are independent
of time. By setting ¢ = 0 in cquations (37) and (38)
and making use of the initial conditions in equations
(18) and (19), these coefficients can be evaluated using
a least-squares technique [6, 7]. First, we sct up the
following integral :

! i
Q= j {[ Y. Cilascos D ¢,x
U n=1

+a,g(¢,) cos D>, XA, —an

X [ Y. &ascos D&, x

n=1

+a6g(é—rl) Cos ng,,x)/?” _(17;|

o 5

n—

ENbscos D¢, x
+bég(§n) COoS D:&,,.Y)A,, _b7:|

X [ Z EX(b, cos D&, x

=1

+b,g(&,) cos D:E,,x)/?,,—m]} dv  (39)

which must be a minimum and in which

as = —K,Di+pC,
a, = —K,D3i+pC,
a;=T,-T,
b.=K,6D;
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by = K,.6D3
b7 = UO - Ua‘
The parameters £, and 4, are complex conjugates of
¢, and A, respectively.
The condition that © be a minimum requires that

its partial derivatives with respect to 4,, or 4,, shall
be zero. We therefore have

oQ ! .
_3:4:; = L{[”: ! {iascos Dy x

+a,g({,) cos D6, x)A, ~ av]

x Ex(ascos D\ E,x

+aﬁg(5m) cos DZme)

+[ Z EXbscos D E,x

oyl
+beg{é)cos D¢ x4, — b;]
xEX(bscos D, & x
+beg(E,)cos szn,x)} dx

=0 (m=123..). (40)

Note that the same results are obtained if we set

0Q/0A4,, = 0. In matrix form, equation (40) generates
a Hermitian matrix as

[Cmn]{An} = {Rm} (41)
in which
!
lel = J\ {[E;Ex(as cos D]me
0
+asg(&,) cos D&, x)E0 (as cos D &,x
+aeg(&,) cos D&, x)]+[Ex(bs cos D, x
+ b(wg(‘fm) cos Dlé-mx)és(’bS cos DI énx
+b6g(én)cos DZénx)]}d'x (42)
and
1— -
R, = j 531{(‘?7@5 “+bibs)cos D, E,x
L ¢]
+(@ra6+b1b6)g(E,) cos D,&,x)dx.  (43)

The coefficients 4, can be determined from the system
of linear equations (41). We can then calculate T, and
U, from equations (37) and (38), and T and U from
equations (10) and (11).
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NUMERICAL EXAMPLE AND DISCUSSION

The thermophysical properties of spruce and other
input data used by Thomas ez al. [8] will be used in
the numerical calculations so that the results can be
directly compared with the finite element predictions
of these authors. Since the purpose of the study by
Thomas e al. [8] was to check the experimental data
of Keylwerth [10], we will also include Keylwerth’s
data in our comparison. The input data are as follows :

thermal conductivity coefficient, K, = 0.65 W m™'
K7 i

moisture conductivity coefficient, K, = 2.2x 107*
kgm™'s7 ! M~

heat capacity, C, = 2500 J kg~ ' K~'

moisture capacity, C, =001 kg (moisture)
(kg (dry body)) ™' “M"!

dry body density, p = 370 kgm™*

ratio of vapor diffusion coefficient to coefficient of
total moisture diffusion, ¢ = 0.3

heat of phase change (from ref. [9]), 4 = 2.5x 10°
Jkg™!

thermogradient coefficient, 6 = 2.0°M K

convective heat transfer coefficient, o, =22.5 W
m K~

convective mass transfer
25x107kgm~s™! "M ™!

half thickness of specimen in radial direction,
[=0012m

initial temperature, T, = 10°C

air temperature, 7, = 110°C

initial moisture potential, U, = 86°M

air moisture potential, U, = 4°M.

coefficient, «,, =

We note that the constant thermophysical prop-
erties listed are only for numerical comparison with
existing data in the literature. In reality, these prop-
erties may be functions of either moisture content
or temperature, requiring the application of zonal
calculations [2] for improved solutions. We can also
apply numerical techniques such as the finite element
method used by Thomas ez al. [9] and the finite differ-
ence approach employed by Stanish er al [11] to
account for variable thermophysical properties.

The real eigenvalues in equation (35) were obtained
using a bisection procedure. For the complex roots,
we used a method by Miiller [5]. After an exhaustive
search for all the complex roots, we could find only
one pair. They are as follows:

4.15949 x 1072 £ 1.61002 x 1073,

The system of linear equations (41) converges
rapidly. As pointed out previously, the complex roots
were overlooked in all the previous studies in the
literature that used analytical methods. To examine
the effect of the pair of complex roots on the final
solutions, we checked the initial conditions at the
specimen center by first considering real eigenvalues
anlv and then including the complex eigenvalues. The
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Table I. Temperature and moisture potential for the first »
real eigenvalues”

10 20 30 40 50 60

Ty (K)

339.8 3458 3440 3450 3445
Uy (M) 80.4 &1.2  81.0 81.1  81.1 8l
w=0.1=0

results obtained from the first 1 real roots for T, and
U, are shown in Table 1.

The input data are 7, =283.15 K or 10°C and
U, = 86 M. By increasing the number of terms with-
out considering the complex roots, we clearly cannot
satisfy the initial conditions (see Table 1). When we
used the first 38 real roots plus the above pair of
complex roots, we oblained 7,=2834 K and
U, = 85.99 M, which are essentially the same as the
input valucs.

Figure 2 shows the variations of temperaturc at the
specimen center and surface as a function of time. For
the initial period of less than 10 min, the complex
cigenvalues had a very significant effect.

The variations of moisture content at the specimen
center and surface as a function of time are presented
in Fig. 3. As shown. the moisture content at the sur-
facc may be higher than that at the center when the
complex eigenvalues are not included in the numerical
calculations. This is, of course. impossible in a drying
cnvironment. Therefore, excluding the complex eigen-
values in the analysis resuits in a solution that is not
only incomplete but also erroncous.

Complex eigenvalues

Temperature (°C)
@
[s]

included
40 — -~ Not included
20
o vt Lo ciand ool
| to 100 ICO0

Time (min)

F1G. 2. Temperature at center and surface of spruce specimen.

100
e —
’\3 - ~
S 80T —
T T
T 601
o
(5]
[
5 40F Complex eigenvalues
g ——— included
2 20f —— Not included
O L IlI!llll i Illlllll 1 lllllli]
1 10 100 1000
Time (min)

Fi. 3. Moisture content at center and surface of spruce
specimern.
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Figure 4 presents the finite element results by
Thomas et al. [8]. the cxperimental data by Keylwerth
[10], and the solution of the present work for the
variation in surfacc temperature with time. Results
from the same sources for variation in center tem-
perature with time arc plotted in Fig. 5. The dis-
crepancies between the analytical results and the
experimental data can be explained by the constant
thermophysical properties of spruce used in the cal-
culations and the difficulties in experimental meusure-
ments. The finite clement solutions closely follow the
general trend of the analytical results. The accuracy
of the finite clement solutions depends on. among
other things, the refinement ol the elements as wel! as
the criterion of convergence, which are not disclosed
in Thomas et al. [8].

The moisture variations at the surface and center
of the specimen with time arc shown in Figs. 6 and 7,
respectively. As discussed by Thomas er al. [§]. the
crooked shape of the experimental curve between
{ = 30 and 200 min in Fig. 6 was not cxplained by
Keylwerth [10] and was thercefore considered to be
suspect. Thomas er af. [8] also mentioned that their
finitc clement analysis was modeled in two stages so
that their results would agree with experimental dita
up to 7 = 10 min. They did not give the details of this
two-stage modeling. No such adjustments were made
in the present work.

120~

100k =
£ sof —
o .
5 s
5 60 / / / — — Experimental {Keylwerth)
k4 -——=FEM (Thomas etai)
E 40 Present work
@

20

0 Lol Lol bl
! 10 100 IGO0
Time {min)

FiG. 4. Temperature at surface of spruce specimen. Lines

represent experimental data of Keylwerth [10], finitc clement

method (FEM) of Thomas ¢r al. [8]. and results of work
reported here.

120
100
o
e 801
2
5
5 60 //- —:— Experimental (Keylwerth)
2 / — — FEM {Thomas etoi)
- s
§ 40 0 Present work
s
20—//_/v
—
o Loy Lot al Lty
! 10 100 1000

Time {min)
Fi1G. 5. Temperature at center of spruce specimen. Lines
represent experimental data of Keylwerth [10], finite element
method (FEM) of Thomas ¢r «f. [8], and results of work
reported here.
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100
80k A
~

60

- —-— Experimental (Keylwerth) \-
— — FEM (Thomas et al)

40

Moisture content (%)

20} —— Present work N
\
o N RS B N AT | Ll
t 10 100 1000
Time (min)

F1G. 6. Moisture content at surface of spruce specimen. Lines

represent experimental data of Keylwerth {10], finite element

method (FEM) of Thomas et «f. [8], and results of work
reported here.

00—
£ sor
€
£ 60F
S —— Experimental (Keylwerth)
® 40~ — — FEM (Thomas et al)
a Present work
2 20r .
o
o R Lol b vl
I 100 1000

Time (min)

F1G. 7. Moisture content at center of spruce specimen. Lines

represent experimental data of Keylwerth [10], finite element

method (FEM) of Thomas er al. [8], and results of work
reported here.

CONCLUSIONS

This paper presents an analytical method for solv-
ing the Luikov equations for heat and mass transfer
to predict the temperature and moisture distributions
in capillary-porous bodies during drying. The
inclusion of the complex eigenvalues in the analysis
was found to be of substantial importance. Without
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these values, as was the case in the other known analy-
ses in the literature, the solutions are not only incom-
plete but physically unreasonable. Numerical results
compare reasonably well with published experimental
data for spruce specimens and can serve to evaluate
the accuracy of any approximate nurnerical methods,
such as finite element and finite difference techniques.
when applied to solve this kind of problem.
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SOLUTIONS DES EQUATIONS DE LUIKOV POUR LE TRANSFERT DE CHALEUR ET
DE MASSE DANS LES CORPS A POROSITE CAPILLAIRE

Résumé—On présente une méthode analytique pour résoudre le systéme d’équations linéaires aux dérivées
partielles de Luikov avec des conditions spécifiées initiales et aux limites. Ces équations de Luikov sont
celles qui régissent les problémes de diffusion de chaleur et de masse pour les corps a porosité capillaire.
Néanmoins une méthode analytique est absente dans la littérature. La méthode présentée ici est illustrée
en considérant les distributions de température et d’humidité dans une couche de bois pendant le séchage.
Des résultats numériques sont obtenus et comparés avec des solutions aux éléments finies déja publiées et
des données expérimentales sur des spécimens en spruce. La méthode pourrait avoir une application
générale aux problémes dans les corps 4 porosité capillaire.
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LOSUNG DER LUIKOV-GLEICHUNG FUR DIE WARME- UND
STOFFUBERTRAGUNG IN KAPILLARPOROSEN KORPERN

Zusammenfassung—In der vorliegenden Arbeit wird ein analytisches Verfahren zur Lésung des Systems
linearer partieller Differentialgleichungen nach Luikov bei gegebenen Anfangs- und Randbedingungen
vorgeschlagen. Als Luikov-Gleichungen werden die maligeblichen Gleichungen flir Probleme des Wirme-
und Stofftransports in kapillarporésen Kérpern bezeichnet. Bisher wird in der Literatur kein befriedigendes
vollstindiges analytisches Losungsverfahren fiir diese Gleichungen beschrieben. Das hier vorgestellte
Losungsverfahren wird anhand der zeitlichen Verteilung von Temperatur und Feuchtigkeit withrend des
Trocknungsvorgangs in einer Holzplatte verdeutlicht. Es werden numerische Lésungen ermittelt und
mit veroffentlichten Finite-Elemente-Ldsungen sowie mit experimentellen Daten fiir Fichtenholzproben
verglichen. Das vorgestellte Verfahren sollte allgemein auf Probleme der Wirme- und Stofftibertragung in
kapillarpordsen Kérpern anwendbar sein.

PEIIEHUE YPABHEHHWH JILIKOBA, OITUCBIBAIOWIMX TEIJIO- © MACCOITEPEHOC B
KAMMWIJIAPHO-TIOPUCTBIX TEJIAX

Annorauus—IIpencTasieH aHATATHHECKHH METO PELLCHHS TIPEIIIOKEHHOMN JIBIKOBBIM CHCTEMBI JIHHEH-
Hbix Au(depeHUHaNbHBIX YPaBHEHHH B YACTHBIX MPOH3BOAHLIX NPH 3aAaHHBIX HAYaJIbHBIX H I'PAHHYHBIX
ycnosuax. YpaBHeHus JIbIKOBa SIBASIOTCS ONpPENEAIOIAMM NPH aHAIM3E 3aja¥ TEIJIO- B Maccomepe-
HOCa B KallWJUIAPHO-MOPUCTHIX Teax. OnHaKoO aHaJTHTHYECKUH METO, MO3BOJIAIOMHAN NOTYYUTh IIOJIHBIE
PelLcHHs YKa3aHHBIX ypaBHEHHI, 10 CHX NOP He onucaH B JMTepaType. [IpenioxkerHbiit B naHHO#M cTaThe
MeTO/l PellleHHs HWUIIOCTPHPYETCA HAa NMpHMepe HECTALMOHAPHOH 3a1a4M MJIS pacrpeneneHuii Temnepa-
TYpbl U BNaru B [EPeBSIHHON IUIacTHHe B mpouecce Cyluku. [TosnyyeHHbIE Pe3ylbTaThkl CPaBHBAIOTCH C
onyGJINKOBAHHBIMU PEILICHASMH, HAHIEHHBIMH C MOMOINBIO METONA KOHEYHBIX JJIEMEHTOB, H 3KCIEpH-
MEHTA/IbHBMA O3HHBIMH 1A 06pa3uos end. OmncaHHBI METOX MOXET ObITh NMPHMEHEH K 3aAayaM
TEIUIO- H MACCONEPeHOCa B KAMWIIIAPHO-TIOPUCTRIX TeNax.



