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Abstract-This paper presents an analytical method to solve the Luikov system of linear partial differential 
equations subject to specified initial and boundary conditions. Luikov equations are the governing equa- 
tions in analyzing heat and mass diffusion problems for capillary-porous bodies. However, an analytical 
method to obtain complete and satisfactory solutions of these equations is still lacking in the literature. 
The method of solution presented in this paper is illustrated by considering the transient distributions of 
temperature and moisture in a slab of wood during drying. Numerical results are obtained and compared 
with published finite element solutions and experimental data for spruce specimens. The method should 

have a general application to problems of heat and mass transfer in capillary-porous bodies. 

INTRODUCTION 

THIS PAPER presents a method of solution for the 
system of linear partial differential equations derived 
by Luikov [I]. The Luikov system of equations is a 
non-linear system because the transfer coefficients are 
functions of either moisture content or temperature. 

To make this system more mathematically tractable, 
Luikov and Mikhailov [2] suggested that calculations 
of time-dependent heat and mass transfer be made 

assuming constant transfer coefficient zones (average 
values can be taken for each zone). Therefore, an 
efficient method of solution for the linear system with 

constant transfer coefficients is instrumental in solving 
the non-linear system of equations. For the simple 
cases of a slab, a cylinder, and a sphere, Luikov and 
Mikhailov [2] used the Laplace transform technique 
to obtain their solutions. These same problems were 
also treated by Mikhailov and ozi$k [3] using the 
finite integral transform technique. They obtained the 
same solutions as those of Luikov and Mikhailov [2]. 
However. as Lobo et al. [4] recently indicated, these 

solutions ignored the possible existence of complex 
eigenvalues, and the solutions must therefore be re- 
examined. If complex eigenvalues do exist. these solu- 
tions can be grossly in error. 

In our study, we developed an analytical approach 
that yields complete and satisfactory solutions for 
the Luikov equations subject to specified initial and 
boundary conditions. The temperature and moisture 
potential are expressed in terms of a potential function 
reducing the two coupled Luikov equations to a single 
fourth-order partial differential equation. with the 
potential function as the dependent variable. The 

solution of this equation leads to separate expressions 
for the temperature and moisture potential, which 
are coupled by the boundary conditions. From the 
boundary conditions we obtain a transcendental 
equation that can be satisfied by an infinite number 
of real eigenvalues. Using the method of Miiller [5], 

we found that the equation also has a pair of complex 
roots. Thus, the temperature and moisture potential 
are expressed in terms of the eigenvalues and an equal 
number of unknown coefficients in the form of infinite 
series. Making use of the initial conditions, the 
unknown coefficients may be evaluated using a least- 
squares technique [6, 71. When the complex eigen- 
values are not included in the infinite series, the solu- 
tions cannot satisfy the initial conditions. We show 
that both real and complex eigenvalues are needed to 
yield results that can satisfy all the conditions of the 
problem. 

The significance of the present study is threefold : 
(I) our method of solution should have a general 
application to problems of heat and mass transfer in 
capillary-porous bodies ; (2) our solutions provide an 
approach to evaluate the relative importance of 

the thermophysical properties of capillary-porous 
materials in a heat and mass transfer analysis; and 
(3) our solutions serve to gauge the accuracy of any 
numerical approaches such as the finite element and 
the finite difference techniques when applied to solve 
this type of problem. 

HEAT AND MASS TRANSFER EQUATIONS 

For the one-dimensional case as shown in Fig. 1, 
heat and moisture move along the x-axis only. Under 
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NOMENCLATURE 

.4, B arbitrary constant coefficients Greek symbols 

c moisture content -y,,, convective mass transl~r coefficient 

C,,, moisture capacity T, convective heat Lransfer coefficient 

$, heat capacity ii thermographic coefficient 

.rJ RI, n i: ratio of vapor diffusion coetficient to 

K,,, moisture conductivity coefficient coefficient of total moisture difl’usion 

KCi thermal conductivity coefficient i heat of phase change 

I hnlT thickness of specimen I’ dry body densit) 

7-3 tcmpcrature of drying medium (i, potential function. 

T,, initial temperature 

f time Subscripts 

I, moisture potential ;1 surrounding medium 

I.,. / moisture potential of drying !)I mass transfcl 

medium (1 heat transfer 

L,.,, initial moisture potential. 0 initial condition. 

_ 

constant pressure condition, L.uikov [l] equations can 

be written as follows : 

and 

where T is the tcmperaturc. CI the moisture potential. 
t the time, K, and K,,, the thermal and moisture con- 

ductivity coeflicients. respectively, Cc, and C,,, the heat 
and moisture capacities, respectively, y the dry body 
density, 8 the ratio of the vapor diffusion coefficient 
to the coefficient of total moisture diffusion. i the heat 

of phase change. and S the thermogradient coefficient. 

The moisture potential CT is related to the moisture 

content C by 

the boundary conditions of the third kind [I] apply. 
They are 

K<,;;+z<,(T-r,,+(l -i:)ir,,,(U-I’,) = 0 (4) 

where q, and x,,, are convective heat and mass transfer 
coefficients. respectively. and T,, and Cl_, the tcm- 
perature and moisture potential of the drying 
medium. 

Because of symmetry. at .Y = 0 we should have 

c = c,,, L:. (3) 

At the surfaces of the specimen in Fig. I. x = *I. 

iT 

i.\_ 
= 0 

and 
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?U 
- = 0. 
r7.u 

(7) # 

I-- &x4 
- & (CA, + C,K, 

m y 
The initial conditions are assumed to bc constant 

and are represented by +X:.,K+& + “;+;;: 

T(.Y. 0) = To (8) 
n, y ( 

and 
Let 

U(.r, 0) = UC,. 

METHOD OF SOLUTION 

(9) 2c, = Kp~~~(C,K,fC,K,,,+~j.C,,K,,,6) (23) 
m ‘, 

and 

_? 

Introducing two functions T, and U, of x and t 
c; = & ~“IC,. (24) 

m ‘I 
such that 

T(.\_, t) = T, (x. t) + T, 

U(.t-. t) = u, (x. t) + u>, 

and substituting T and U in all 

equations, we obtain the following. 

(10) 

(11) 

Equation (22) can be written as 

the preceding or 

K 
CT, 

~~- +a,T, +(I -E)I.x,,U, = 0 (s = I) ‘I i.\- (14) 

3. lniticil conditions 

T, (x, 0) = T,, - T,, (18) 

Cl, (x, 0) = U” - c:,. (19) 

Introducing a potential function c$(.Y, t) such that 

(20) 

and 

(21) 

we find that equation (13) is automatically satisfied Substituting equation (30) into equations (20) and 
and equation (12) becomes (2 1) yields 

which can bc broken into two equations as follows : 

(26) 

(27) 

with 

and 

0: = C, + J(c;-c:) (28) 

D; = C, -J(C;-C;). (29) 

Equations (26) and (27) are of the diffusion type. The 

general solution of equation (25) is the sum of the 
solutions of equations (26) and (27) and can therefore 
be written as 

in which 

a = $,(-U,f)+4?(.Y,t) 

Hence 

C$ = cm”’ (A cos D,~s+Bcos D*(x) (30) 

where A and B are arbitrary constant coeficients. 
(Sine functions do not appear because of the con- 
ditions of symmetry represented by equations (16) 
and (17).) 
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T, = ~‘c~“‘[(-K,,Di+p(‘,,)AcosD,~r 

+(-K,,D~+pC,,,)Bcos Dz&] (31) 

c’, = K,,&’ e *Ii (DfAcos D,;.u+D;Bcos D&). 

(31) 

From these expressions and the boundary conditions 
(14) and (15), we obtain 

(a,< sin D,cl+u? cos D,il)A 

+(a?t sin D,t/+u4 cos D,rl)B = 0 (33) 

(/I,[ sin D,ti+h2 cos D,<l)A 

+ (h,t sin D27+h4 cos D?<l)B = 0 (34) 

where 

~1 = K,D,(K,,D:-P~,,) 

c!12 = K,,DT[(l -2:)j.s(,,,i)--r,,]+z,pC,, 

LIP = K,,Dz(K,,,Dj-pc’,,) 

u4 = K,,,D:[(l -i-:)i.x,,6-cc,]+a,,pC, 

b, = -PC,,D, 

b> = sc,D: 

b, = -pC,D; 

17, = c(,,,D;. 

For non-trivial solutions of equations (33) and (34) 
to exisL. the determinant of the coefficients of A and 
B must vanish, giving the transcendental equation 

(D,i tan D,tL+$,)(D,: tan D2<1+$?) = $, (35) 

in which 

x<, K, D 

$I = 

2 
, -cc&,,-(I -E)E.~,,K,,,SD; 

+r,,,K<,D;(l -K,,,D~!PC,,,) 
K,K,,(D;-D;) 

From equation (34) we can also derive 

B -pC,,,D,[ sin D,<l+x,,,Di cos D,<L 

A 
~- = g(5) 

= pC,,D2< sin D,<l-cr,,,DI cos D251 

(36) which must be a minimum and in which 

where the ratio B/A is set equal to g so that B can be 
expressed in terms of A or A in terms of B. 

In equation (35) the constant parameter t can take 
an infinite number of real values and can also take 

values of <. For each eigenvalue, corresponding values 
for A and B should exist. Therefore, equations (31) 
and (32) can be put in the following series form : 

/ 
T, = c r; e i,‘J A,,[(-K,,,Di+K,J 

,I-~ I 

xcos D,;,,s+(-K,,,Dj+/,C,,)y(5,,) 

x cos D&Y] (37) 

and 

/7-- 1 

+ D;g(<,,) cm D2<,,x] (38) 

where the function g(t,,) from equation (36) is used 
to eliminate B,,. Since g,, can be either positive OI 

negative in the preceding equations without changing 
the results, we riced to take only positive real values 
and complex values with positive real components in 
the following calculations. 

Now WC must evaluate the coefficient .4,, in cqua- 
(ions (37) and (38). These coefficients are independent 
of time. By setting t = 0 in equations (37) and (38) 
and making use of the initial conditions in equations 

(I 8) and (I 9), these coefficients can be evaluated using 
a least-squares technique [6. 71. First, we set up the 
following integral : 

Q= a, cos D,<,,.\r 

+u,,g(5,,) ~0s D~<,,.+4 -(I: I 
I 

x 1 [,:(a, cos D,{,,.Y 
,,m I 

+ i c;(b,cos D,<,,.u 
I/- I 

+ bh,g(L) cos D,[,,s)A,, -b, 
I 

+hhg(i;,) cos D,S;,.w)%, - b, d-v (39) 

05 = - K,, D ; f PC,,, 

uh = -K,,,D;+,,C,,, 

u7 = T,,- T., 

some complex values. These values are called eigen- 
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h, = Km6D: NUMERICAL EXAMPLE AND DISCUSSION 

h7 = iJo--u,. 

The parameters & and 2, are complex conjugates of 
5, and A,, respectively. 

The condition that R be a minimum requires that 
its partial derivatives with respect to A,,, or A,, shall 
be zero. We therefore have 

The thermophysical properties of spruce and other 
input data used by Thomas et al. [8] will be used in 
the numerical calculations so that the results can be 
directly compared with the finite element predictions 
of these authors. Since the purpose of the study by 
Thomas et al. [8] was to check the experimental data 
of Keylwerth [lo], we will also include Keylwerth’s 
data in our comparison. The input data are as follows : 

x &b, cos D, 5-,x 

+ bd5;,) cos D,~n_,,x) d.~ 

=0 (m=1,2,3 ,... )_ (401 

Note that the same results are obtained if we set 
~~~~~“, = 0. In matrix form, equation (40) generates 
a Hermitian matrix as 

[G,,l{Anj = {&I (41) 

in which 

i-a&i?,,) ~0s D2k,x)S,%s cos D,C,x 

+w(Lf ~0s D&41 + It:@, ~0s D,&,.Y 

+bd’wm) ~0s D,hG,%b, cm D,t,,x 

+b,dSIJ ~0s DA41 dx I (42) 

and 

-t @we + b,b,MS-,) cm D~~,nxl dx. (43) 

The coefficients A, can be determined from the system 
of linear equations (41). We can then calculate T, and 
CJ, from equations (37) and (38), and T and U from 
equations (10) and (11). 

thermal conductivity coefficient, Kc, = 0.65 W m- ’ 
K-1 

moisture conductivity coefficient. K,,, = 2.2 x lOmu 

kgm-‘s-“M-’ 
heat capacity, C, = 2500 J kg- ’ Km ’ 
moisture capacity, C, = 0.01 kg (moisture) 

(kg (dry body))- ’ ’ M _ ’ 
dry body density, p = 370 kg m- ’ 
ratio of vapor diffusion coefficient to coefficient of 

total moisture diffusion, E = 0.3 
heat of phase change (from ref. [9]), i, = 2.5 x 1Oh 

J kg-’ 
thermogradient coefficient, 6 = 2.O”M K- ’ 
convective heat transfer coefficient, cly = 22.5 W 

m -1 Km’ 

convective mass transfer coefficient, an, = 
2.5 x 10. 6 kg m---‘s-, ‘M-1 

half thickness of specimen in radial direction, 
‘= 0.012 m 

initial temperature, r, = 1O’C 
air temperature, r, = 110°C 
initial moisture potential, U, = 86’M 
air moisture potential, Ui, = 4”M. 

We note that the constant thermophysical prop- 
erties listed are only for numerical comparison with 
existing data in the literature. In reality, these prop- 
erties may be functions of either moisture content 
or temperature, requiring the application of zonal 
calculations [2] for improved solutions. We can also 
apply numerical techniques such as the finite element 
method used by Thomas et al. [9] and the finite differ- 
ence approach employed by Stanish ef al. [I l] to 
account for variable thermophysical properties. 

The real eigenvalues in equation (35) were obtained 
using a bisection procedure. For the complex roots, 
we used a method by Miiller [5]. After an exhaustive 
search for all the complex roots, we could find only 
one pair. They are as follows : 

4.15949x 10-*rfr1.61002x 10e3i. 

The system of linear equations (41) converges 
rapidly. As pointed out previously, the complex roots 
were overlooked in all the previous studies in the 
literature that used analytical methods. To examine 
the effect of the pair of complex roots on the final 
solutions, we checked the initial conditions at the 
specimen center by first considering real eigenvalues 
nnlv and then including the complex eigenvalues. The 
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Table I. Temperature and molsturc potential for the first II 
real eigenvalues” 

I 0 20 30 40 50 60 

I‘,, (K) 339.8 345.X 344.0 345.0 344.5 344,s 
L’,, ( M) 80.4 81.2 8 I .o XI.1 XI.1 81.1 

“.\. = 0. I = 0. 

results obtained from the first II real roots for T,, and 

U,, are shown in Table 1. 
The input data arc T,, = 283. I5 K or IO C and 

Cl,, = 86 M. By increasing the number of terms with- 
out considering the complex roots. we clearly cannot 

satisfy the initial conditions (see Table I). When WC 
used the first 38 real roots plus the above pair of 
complex roots, WC obtained T,, = 283.4 K and 
c’,, = X5.99 M. which arc essentially the same as the 

input values. 

Figure 2 shows the variations of temperature at the 
specimen center and surlhce as a function of time. For 
the initial period of less than IO min, the complex 
cigenvatues had a very significant efrect. 

The vat-iations of moisture content at the specimen 

center and surface as a function of time are presented 
in Fig. 3. As shown. the moisture content at the sur- 
fact may bc higher than that at Ihe center when the 
complex eigenvatues are not included in the numerical 
calculations. This is. of course. impossible in a drying 

environment. Therefore. excluding the complex eigen- 
~atues in the analysis rcsutts in a sotulion that is not 
only incomplete but also erroneous. 

Complex elgenvalues 

-included 
--Not included 

Time (mm) 

I:Ic;. 2. Temperature at center and surl‘ace ofspruce specimen. 

too- 

FIG. 3. Mo~slurc content at center and surface of spruce 
specimen. 

Figure 4 presents the finite clement results be 
Thomas et (I/. [Xl. the experimental data by Keylwcrth 

[](.I> and the solution of the present world for the 
variation in surface tcmpcraturc with time. Kesut!s 

from Ihc same sources for variation in cenlci- Icm- 
perature with time arc plotted in Fig. 5. The dis- 
czrcpancies between the analytical rcsutts u~d ~IIC 

cxpcrimcntat data can be cxptaincd by the constant 

thcrmophysicat properties of spruce used in the cat- 
culations and the ditficulGcs in cxpcrimcntal mcasurc- 

merits. The finite clement solutions closely follow the 
general trend of the analytical results. The accuraq 

of Ihc finite clcmcnl solutions depends on. among 
other things, the rcfincmcnt of the elements as wcl! as 

the criterion of convergcncc. which arc not disclo\cct 

in Thomas c’t trl. [Xl. 
The moisCurc variations at rhc surface and ccn~~ 

of the specimen with time arc shown in Figs. 6 and 7, 
rcapcctivcty. As discussed by Thomas 1’1 rrl. [Xl. ihc 
croaked shape of the cxperimcntat curve bc~wecn 
/ = 30 and 200 min in Fig. 6 was not cxplaincd by 
Kcytwerth [IO] and was thcrcforc considcrcd co bc 

suspect. Thomas 1’1 (11. [X] also mentioned that rheil 
linitc clcmcni analysis was modeled in two shades so 
that their results would agree wilh experimental data 

LIP to I = IO min. They did not give the details of this 
two-stugc modeling. No such adjustments wcrc ma& 

in the present work. 

G 
e 80 

: 

$ 60 

% 
E 40 
? 

---PPrese”, work 

Tfme jmlnl 

f’ic;. 4. I.cmpcrature at surlacc of spruw specimen. Llncs 
rcplcsent experimental data of Kcylwerth [IO], finite clcnw~t 
method (FEM) of Thomas (‘I trl. [8]. and results 01. work 

reported hcrc. 

,,,C / -.- Expenmentol iKeylwerth1 

- Present work 

Time (m(n) 

1;~. 5. Temperature at center of spruce specunen. Lines 
represent experimental data of Keylwerth [IO]. finite element 
method (FEM) of Thomas CI trl. [8], and results of work 

reported here. 
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-.- Experimental 0teylwerth) 1 ,lrI FF’y;, CC> 
I IO 100 1000 

Time (min) 

FIG. 6. Moisture content at surface of spruce specimen. Lines 
represent experimental data of Keylwerth [IO], finiteelement 
method (FEM) of Thomas et ~1. [8], and results of work 

reported here. 

100 r 

~:i__:.,1,~ -‘- Experimental (Keylwerth) 

FIG. 7. Moisture content at center of spruce specimen. Lines 
represent experimental data of Keylwerth [lo], finite element 
method (FEM) of Thomas ef ul. [Xl, and results of work 

reported here. 

CONCLUSIONS 

This paper presents an analytical method for solv- 

ing the Luikov equations for heat and mass transfer 
to predict the temperature and moisture distributions 
in capillary-porous bodies during drying. The 

inclusion of the complex eigenvalues in the analysis 
was found to be of substantial importance. Without 

these values, as was the case in the other known analy- 
ses in the literature, the solutions are not only incom- 
plete but physically unreasonable. Numerical results 

compare reasonably well with published experimental 
data for spruce specimens and can serve to evaluate 
the accuracy of any approximate numerical methods, 
such as finite element and finite difference techniques. 
when applied to solve this kind of problem. 
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SOLUTIONS DES EQUATIONS DE LUIKOV POUR LE TRANSFERT DE CHALEUR ET 
DE MASSE DANS LES CORPS A POROSITE CAPILLAIRE 

R&m&On presente une methode analytique pour resoudre le systeme d’equations lineaires aux d&iv&es 
partielles de Luikov avec des conditions specifites initiales et aux limites. Ces equations de Luikov sont 
celles qui regissent les probltmes de diffusion de chaleur et de masse pour les corps a porosite capillaire. 
Neanmoins une methode analytique est absente dans la litterature. La methode presentee ici est illustrte 
en considerant les distributions de temperature et d’humidite dans une couche de bois pendant le sechage. 
Des resultats numeriques sont obtenus et compares avec des solutions aux elements finies deja publiees et 
des don&es experimentales sur des specimens en spruce. La methode pourrait avoir une application 

gtnerale aux problemes dans Ies corps a porosite capillaire. 
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LOSUNG DER LUIKOV-GLEICHUNG FijR DIE WARME- UND 
STOFFtiBERTRAGUNG IN KAPILLARPOR&EN KijRPERN 

Zusammenfassungpln der vorliegendcn Arbeit wird tin analytwhes Veri’ahrcn ,ur LCsung des Sqstcms 
linearcr partieller Differentialgleichungen nach Luikov bei gcgehenen Anfangs- und Randbedingungcn 
\orgeschlagen. Als Luikov-Gleichungcn werden die mal&blichen Glelchungen fiir Probleme dcs Warme- 
und Stofftransports in kapillarporiiscn Kiirpern be7eichnct. Bisher wird in der Litcratur kcin bcfriedigendcs 
collstiindiges analytisches L6sungsverfahren fiir diese Gleichungen beschrieben. Dils hier vorgestellte 
Liisungsverfahren wird anhand der zeitlichen Verteilung van Tcmperatur und Feuchtigkcit wiihrcnd dcs 
Trocknungsvorgangs in ciner Ilolzplatte verdeutlichi. Es \vcrden numerische Liisungen ermittelt und 
mit \criilTentlichten Finltc-~lemente-Liisungen sowie mit enpcrimentellcn Daten l’iir I7ichtenholzproben 
vcrplichen. Das \orgcstclltc Verfahrcn solltc allgemein auf Problemc dcr Warme- und Stoll‘iibertragung in 

kapillarporbsen Kiirpern anuendbar win. 

PEIIIEHME YPABHEHElti JIbIKOBA, OI-IMCbIBAK)~MX TEILJIO- M MACCOl-IEPEHOC B 
KAl-IAJIJIRPHO-I-IOPkiCTbIX TEJIAX 

k,,OTPW,-~peJWTaBJIL?H aHa."HTWleCKIiii MeTOn peUIeHHK npe,WIOXteHHOii nbIKOBbIM CUCTeMbI JIHHeii- 

HbIX&@e.~HuHaJIbHbIX ypaBHeH&lfi B 4aCTHbIX npOH3BOllHbIXnpH 3anaHHbIX HaWJIbHbIX HrpaHHVHbIX 

ycnoeeax. YpaBHeHun JIbIKoBa KBnmoTcK onpe~ennmumm npu akmnn3e 3ana9 Tenno- w Macconepe- 
Hoca B KantinnrpHo-nopucTbIxTenax.OnHaKo a~anaTsrecKuiiMeTon,no3Bonriouui1 nonywTbnonHbIe 

~I”eHW4 yKa3aHHbIX ypaBHeHNii,fiOCHXnOp HeOnllCaH BJISiTepaTy~.~peMOXCeHHbIfi BAaHHOfi CTaTbe 

MeTon peIlreHiia snnwcTpapyeTcK Ha npwepe HecTaIvioHapHoii sanara wm pacnpeneneeeii Tehtnepa- 

TypbI A BJIarW B nepeBKHHOk nJIaCTBHe B npOUeCCe CyUIKH. nOJIy',eHHbIe pe3ynbTaTbI CpaBHBaFOTCK C 

Ony6JIliKOBaHHbtMH pelUeHWIMH, HafiAeHHbIMH C nOMOIUb,O MeTOna KOHe'iHbIX 3JIeMeHTOB, B 3KCtIepW 

MeHTaJlbHblMH LlaHHbIMB AJIll o6pa3uoB eJIEi. OntiCaHHblfi MeTOA MOxeT 6bITb npHMeHeH K 3aAa'iaM 

Tenno-n MacconepeHoca B KanennnpHo-nopucTbIx Tenax. 


